—Chapter 9—

Maxwell's
Equations

0VFELIH



9-1 The Displacement Current

A. SOMETHING IS MISSING

(1) Electric charge in motion is electric current. Because charge is never

created or destroyed, the charge density p and the current density f
always satisfy the condition

V- f =— —ag .-+ equation of continuity

If p is constant in time, we have

dp o
—=0=>V-J=0
ot /

According to Gauss's law,

VE=Lo)p=cv E
€o
we have

v-i:—%(eov-ﬁ)=—eovg—f=o

Thus, the electric field E is constant in time. The current driven by
this electric field is called the steady current.

(2) If p and B change in time, we have
dp

V']=—5?¢0

According to Ampére's law,

Vxﬁzuof:fz—l—(Vxﬁ)
Ho
we have

L1 ,
v-]=l—1;v-(zox3)=o

We find the contradiction here. Since Ampére's law is only valid for
the steady current, there must be a missing term in Ampére's law.

B. THE DISPLACEMENT CURRENT

(1) Consider the line integral of magnetic field around the wire that carries
charge away from the capacitor plate
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According to Stokes' theorem,

£§~d§=f5(v><§)-d&=y01

The surface § passes right through the conductor in which a current I
is flowing.
The surface §' is a surface spanning C,

according to Stokes' theorem, there flows no current through this

surface.
f§~d§=f (v><§)-d&=f o) -dd =0
(64 S——= s’
#0 no current
through

the surface
Therefore, on §', VX B must depend on something other than the

current density J.

(2) Define a displacement current density fd
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— - - - aE
VxB = po(J+]a) and Ja = eo 5
Thus, we obtain
OE

B-ds= xB)-dd= [+],) -dd = — - dd
jgc s _L, (V ) a _L/MO (] +]d) a = Ho€o T a
The electric field at a particular instant.

E
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9-2 Maxwell's Equations

DIFFERENTIAL FORM OF MAXWELL'S EQUATIONS

For fields in the presence of electric charge of density p and electric
current, that is, charge in motion, of density i .
L, 0B
VXE = BT Faraday's law
S OE
VXB = pof +.U0€073?
V-E= P Gauss's law
€o
V-B=0

The second expresses the dependence of the magnetic field on the
displacement current density, or rate of change of electric field, and on
the conduction current density, or rate of motion of charge.

The fourth equation states that there are no sources of magnetic field
except currents; that is, there are no magnetic monopoles.

In empty space, the terms with p and f are zero,

VXE = TR Faraday's law

- OE
Y X_)B = Up€p 3{;
V-E=0-- Gauss's law
V-B=0
We can write the two induction equations in a symmetric form

o 1dcB
VXE=———ro
c ot

_ 10E
VxcB=——
c at

The symmetry between E and ¢B is clear.
INTEGRATED FORM OF MAXWELL'S EQUATIONS

The integrated form of Maxwell's equations
Use Gauss's divergence theorem and Stokes' theorem,
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f (vxE) 3@?: ds andf( §)-d&=j€§~d§
S ¢ S ¢

j dr—jgﬁ-ddandf(v-ﬁ)drz B-da

v S % s
Thus, we obtain

L 0B

fE ds=—| —-da - Faraday's law

fﬁ d§:/.101+‘u.060f__ d(_i

¢ L S

fﬁ d(i:——jpd‘r ----- Gauss's law

S €0 Jy

ffﬁ dd =0

S

EXAMPLES:
1. A half-infinite wire carries current I from negative infinity —oo to
the origin 0, where it builds up at a point charge with increasing
q. Consider the circle, which has radius b and subtends an angle
26 with respect to the charge. Show that

S 0E
fB'dS:,Llol‘l"Ll()E()f—_'da

ANSWER:
e L.LHS.: 355 - d3

c
Using Biot-Savart law

_ uoljdfxf
B="2-
4

r2
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Therefore, we obtain

- I I
fB -ds = ﬂ)—(1 —cos0)2nh = Mi(l —cos9)
e 4mh 2

oE |
e R.H.S.: uol + poeg f Fr da
S

There are two surfaces § and 8’ spanning the closed path C.
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For the surface §, since the current does not pass the surface (S
does not intersect the wire), thus, we only need to calculate

9E .
to I + 1o€p | =--da

-

a

he magnitude of the field at the angle £ is

f=rcosf=>r=——

cosf
q q (cosf 2
41eyr? - 471'60( ? )
da = 2mydy
= 2nrsinf d(r sin [?)
£ £sinf
= ZHES—[?—sde(—COSﬁ >
_ ,sinf dp
cos 8 cos? 3

The total flux through the surface is
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0 cos B\’ sin d
=J _9_(cosh 2me? k f cosf
o 4meg\ £ cos f cos? f

-7 (1 —=-cosB)
2¢€q
Therefore, the displacement-current is

aE d =
Uo€o 6 -dd =p Oeod fE da

_ 1 a 0) dq
~ Hoo 2€g cos dt

1
= EZO— (1 —-cosB)
For the surface S”:

The sum of the electric field flux through surfaces § and §'
equals the total flux emanating from the charge q, which is q/¢,.

39 E-da_fE da+f§-dd=i
S+s' S s’ €o
Sl

- ‘ b
I 3 s '
B ] |
~ 0
\\\\\ |
~\/s
The flux through the surface §' is
fﬁ-d&z—q——fﬁ-d& i——(1—cos€)——(1+cos€)
s' €0 Js € 269

R.H.S.:
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I+ j o da I+ djE da
Hol T Ho€o | —-aa = Uol + Uo€o 7= -aa
S, at dt 5’

d q
= Upl —(1 6
Ho +H0€00t260( + cos )
I
=u01—ﬂ%(1+c059)
U

= 01(1 0
== —cosB)
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9-3 Electromagnetic Waves in Vacuum

WAVE EQUATION

In empty space, the terms with p and f are zero, two induction
equations are
L, 0B
VXE = TR Faraday's law

S 0E
VX B = loJa = Ho€o 51

They constitute a set of coupled first-order differential equations for E
and B. Applying curl to both equations give

VX(VXE)ZV(V'E)_VZE:—$=—%%§
N 9 Vxﬁ) 028

Vx (VxB)=V(v-B) - 2B = oeq
=0

Tt T HSge

Thus, we obtain
V2E = pge QZ—E
00 ati
V2B = pye 92?
00 atz . .
two decoupled second-order differential equations for E and B. Both
equations are called wave equations. So Maxwell's equation imply that
empty space supports the propagation of electromagnetic waves,
traveling at a speed,
v= L =3.00x108m/s=c¢

VHo€o

which happens to be precisely the velocity of light, c. Thus, we have

Suppose that the waves are traveling in the y direction and have no x
or z dependence;
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these are called plane waves, because the fields are uniform over every
plane perpendicular to the direction of propagation.
The solutions of electromagnetic wave equations are

E(y' t) — E’Oei(wt—ky-y)

B0, = B4
Since

V-E=0and V-B =0 in Maxwell's equations,
that is,

V-E(yt)= —ikEO,ye"(“’t"‘Y'y) =0=Ey, =0

V-B(y,t) = —ikBOVyei(wt_ky'y) =0=B,, =0
Thus, electromagnetic waves are transverse: the electric and magnetic
fields are perpendicular to the direction of propagation.
Since

- 0B
VXE = BT Faraday's law

implies a relation between the electric and magnetic amplitudes,

b4 y 2
. 0 4] 0
VXE = 0x ay 0z

Eo'xel(wt—ky-y) 0 onzei(wt—kyJ’)

= —ikEo e (R Y)3 ik g ()
o8 (bt (wt—ke
3 = ia)Bo,xel(wt ky y)a? + inolzel(("t ky y)é
Thus, we obtain
_ky . EO,Z = wBO,X and ky . EO,X’ = wBO,Z
or, more compactly:
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(3) The monochromatic plane waves traveling in an arbitrary direction.

Er,t) = Byl F)a

kxa 1. .
B(r,t) = Eye' i(we-k7) — = ;kxE
where 71 is called the polarization vector.

Since

“ oA N 1, 2 R
fi- k=0:>E-k=0andB-k=E(kxE)-k=0

Both E and B are transverse.
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B. ELECTROMAGNETIC ENERGY AND POYNTING
VECTOR

(1) The electrostatic energy is equivalent to a capacitor C with potential
difference V between opposite charged plates |c.f.4-4]

The magnetic energy is equivalent to a circuit with self-inductance L
containing current [ [c.f.7-4]

2Up 2
The total energy stored in electromagnetic fields is

o [ 2 1 2 1 2. 1
U=Ue+Um=? E dT+2_‘u.0 B dT:E EOE +H._OB dt

(2) Consider some distribution of charges and currents. In small time dt a
charge will move vdt and, according to the Lorentz force law, the work
done on a charge will be

U =F-dl=q(E+0xB)-vdt = qF - vt
In terms of charge density p and current density f = pv, we have
dU = pdtE - $dt = E - pdrdt = E - Jdrdt
auv. ou B.7
ardr ot
The power delivered to the system is
dU_ aud —f(E _))d
ac )T J)dr
Thus, E- f is the power delivered per unit volume.

(3) Express E- f in terms of the fields,
Lo, oo (1 - OF
Since
V-(§x§)=§-(VxE)—E-(Vx§)

we obtain
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- o> 1 - - - - -
E-]=—(B' VXE)=V-|EXB))—¢€yFE -—
(B (7xE) -7 (ExF)) -«
Using Faraday's law, we obtain

I | ﬁ< a§> I )
E-]=E<B- = ~v-(ExB) —eoF o

1. 0B 1_ ;o - .
=——F = ——V-(ExB) -6k -~

=——|=-E*+-—B?)-—V-(EXB
6t<2 +2H0 ) Ho ( )

Finally, we can integrate over the volume containing the current and

charge,
> d €o 1 1 - —
E- =——|(=E?+-—B? —— |V-(EXB
[ Dar=-5 [ ($524 582 )ar = [v: (ExB)ar
Using Gauss's divergence theorem,
V- (ExB)dr = § (£ xB)- d
[[v-(Ex8)ac=§ (Ex7)
we obtain
E-J)dt=—— (——E2+—Bz>dr—— EXB)-dad
-f( ) at) \ 2 210 Ko 5( )

This is Poynting theorem:

energy lost by fields = energy gained by charges + energy flow
out of volume.

(4) Hence we can identify the vector

- 1 - -
S=—EXB
Ho
as the energy flux density and it is known as the Poynting vector.

EXAMPLES:

1. In a region of empty space, the power delivered to the system is

- %%dr=fv(ﬁ-f)dr=—u—10 S(Exﬁ)-d&=—£§-d&
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hence, we have
M v.§
ot

This expresses the local conservation of electromagnetic energy.

. A capacitor has circular plates with radius R and is charged by a
constant current I. Find the Poynting vector at radius r inside
the capacitor.

ANSWER:
In a region of empty space, we have

VxB= 0
= Ho€o at

Using Stokes' theorem , we obtain

. ~ OE OE

B-ds = VXB)-da= —-da = — (mr?
i s L( ) a “OEOLat a ,uoeoat(nr)
Since
fﬁ -d§ =B -2nr
e

we obtain the magnetic field as

B - 2nmr = pyé, %% (nr?) > B = @Z—fr@
The Poynting vector is
- 1. — 1 - Ho€p 0E . €o 0E n () aEZ N
S = [,L_OE X B = ;;(E X—Z—ETd)) = —?EETT = —Za—tr
The total power flowing into the cylinder of radius r is then

. . €y0E? €0E? du
P = —jES -da = —4——at—7‘(27'[7"h) = ?7 nr h) = %
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ELECTROMAGNETIC WAVE IN DIFFERENT INERTIAL
FRAME

According to Faraday's law, a changing magnetic field is accompanied
by an electric field, we have

VXE = o8
- ot
This is a local relation connecting the electric and magnetic fields in

empty space. Remember that the Lorentz-transformation of the
electromagnetic fields [c.f.5-5] are

- - - - 1._7) —
1

=, — = — 1_]) -
B":B", CBJ_=)/<CB—EXE>
1
If symmetry with respect to E and ¢B is to prevail, we must expect
that a changing electric field can give rise to a magnetic field. Thus, we
shall have
R 10 (CE)
VXE=———"7"—"-
Vx(ﬁ)—laE:onE)—laE— 0E
C)= ot T g Moy
This provides that Ampére's law has a missing term and should be
modified as
OE
ot
Take the divergence of both sides:

VX B = pof + po€o

—

0E 5

V- (VX B) = uoV-J + oeoV - 5= oV -] =~ oV -] = 0

For an electromagnetic wave, E and cE are perpendicular, i.e.,
E-B=0
and equal in magnitude, i.e.,
E?—c?B?2=0
These two quantities should be invariant in all frames. Thus, we claim
that a light wave looks like a light wave in any inertial frame of
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reference.

(3) Lorentz invariance of E-B

Since

= — =, - 1_7) =

By = By, 1=y|B-5xE

L

we have

E'-B'=E-Bj+E| B}

- - N - - 1-7) -
L

we obtain

2
—), —>, - — - — 17 -
E'-B =E||-B||+y2<El-Bl—C—EL-BL)
= - 1 = - 172-> —
=E||B||+—_72' EL.BL__EL'BJ_

tryy by

(4) Lorentz invariance of E? — c?2B?
E'? — ¢?B"? = E* + E* — ¢*B)* — ¢*B}?
- 2
- -\ 2 - v -
_ 2 2 >
= E? — ¢?B2 +y? (E+va)l—czy2<B—C—2><E>
L
Since
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(E+5xB) =52+ (5xB,) (5 xB,)+2E, - (5 xB,)
= E{ +v®B}
(B-oxE) =B+ (3xE,) (3xE.)+25, (3xE,)
— p2 252
thus, we obtain Ly

! ! UZ
E'? — ¢?B"? = E} — ¢*B} +v* (Ef +v?Bf — ¢? (Bi + FEf)

2
=E}f — c¢*Bff +y* (Ef — ﬁEf> —y%(v?B% — c?B2)

2
<Ef -z E? o2

7 g (v2B% — c?B2)

= Ef — c’Bf +

= Ef — c*Bff + E? — ¢*B}
— EZ _ CZBZ
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